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ABSTRACT: Species distribution models are a fundamental tool in
ecology, conservation biology, and biogeography and typically iden-
tify potential species distributions using static phenomenological
models. We demonstrate the importance of complementing these
popular models with spatially explicit, dynamic mechanistic models
that link potential and realized distributions. We develop general
grid-based, pattern-oriented spread models incorporating three
mechanisms—plant population growth, local dispersal, and long-
distance dispersal—to predict broadscale spread patterns in hetero-
geneous landscapes. We use the model to examine the spread of the
invasive Celastrus orbiculatus (Oriental bittersweet) by Sturnus vul-
garis (European starling) across northeastern North America. We find
excellent quantitative agreement with historical spread records over
the last century that are critically linked to the geometry of hetero-
geneous landscapes and each of the explanatory mechanisms con-
sidered. Spread of bittersweet before 1960 was primarily driven by
high growth rates in developed and agricultural landscapes, while
subsequent spread was mediated by expansion into deciduous and
coniferous forests. Large, continuous patches of coniferous forests
may substantially impede invasion. The success of C. orbiculatus and
its potential mutualism with S. vulgaris suggest troubling predictions
for the spread of other invasive, fleshy-fruited plant species across
northeastern North America.

Keywords: Celastrus orbiculatus, cellular automaton, grid-based
model, spatially explicit model, species distribution model, Sturnus
vulgaris.

Introduction

Species distribution models are a fundamental tool in bio-
geography, ecology, and conservation biology; they are use-
ful for addressing questions about biodiversity, morpho-
logical/genetic diversity, and habitat suitability under past,
present, and future climatic conditions. Species distribu-
tion models (also known as ecological niche models) typ-
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ically identify potential species distributions by associating
species occurrence with environmental characteristics and
are static in time. The literature on species distribution
models has grown substantially in the past decade, with a
variety of new modeling methods, for example, Bayesian
generalized linear models (Ibanez et al. 20094, 2009b),
boosted regression trees, ecological niche factor analysis,
Maxent, and multivariate adaptive regression splines (see
summaries in Franklin 2009). Ecologists now rely on these
models for conservation planning and understanding oc-
currence patterns. While informative, these models are
generally phenomenological: they ignore dynamic factors
affecting species distributions, such as dispersal and spread
patterns, that link potential and realized distributions
(Franklin 2010; Gallien et al. 2010). The omission of dis-
persal mechanisms from species distribution models may
lead to model output that overestimates the presence of
species in unreachable locations or underestimates it in
low-suitability areas with high propagule rain. Dynamic
models allow inference about temporal change in species’
distributions. Temporal variation in distributions can be
particularly important when species ranges are in flux,
such as during invasions, periods of land use change or
climate change, or after disturbance (Franklin 2010).
Mechanistic models of species’ distributions are critical
because they go beyond identifying spatial patterns; they
make it possible to identify the factors, and the relation-
ships among factors, that cause the spatial patterns. For
example, phenomenological statistical models can identify
latent spatial patterns in species distributions using spatial
random effects. However, these random effects cannot ex-
plain species’ distributions (e.g., Ibdnez et al. 20094,
2009b). Dynamic models can also estimate the timescales
associated with species spread. We argue that the types of
dynamic mechanistic models we develop here provide the
critical link between phenomenological static models that
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identify distribution patterns and a more complete un-
derstanding of those distributions (cf. Franklin 2010).

We focus here on the problem of invasions by bird-
dispersed plant species to demonstrate the importance of
dynamic mechanistic models. Because the models are quite
general, they can be applied to the spread of any plant
species across a landscape. Our capacity to successfully
manage invasive alien species is commonly limited by our
understanding and ability to predict the rates and patterns
of spread (With 2002). Fleshy-fruited invasive plants are
among the most aggressive invasive species and are pri-
marily spread by birds (Richardson et al. 2000). Bird-
dispersed seeds may be moved farther (e.g., Willson 1993)
and to more favorable habitats (e.g., Wenny 2001) than
those moved by other natural means, and this interaction
can be a determining factor in the invasion process. This
is particularly true in northeastern North America, where
bird-dispersed, invasive woody species are pervasive; they
are found in approximately 61% of 11,000+ field records
in the Invasive Plant Atlas of New England (IPANE; Mehr-
hoff et al. 2003).

While there is a long history of study and a wealth of
information on the biology and ecology of both plant
invasions and fruit-frugivore interactions, little progress
has been made in developing predictive mechanistic mod-
els for the spread of plants with animal-dispersed seeds
(but see, e.g., Nathan and Muller-Landau 2000 and Hig-
gins et al. 2001 for mechanistic models for wind-dispersed
species). Existing animal-mediated seed dispersal models,
with a few exceptions (e.g., Higgins et al. 2001; Levey et
al. 2005; Will and Tackenberg 2008), are phenomenological
and lack a detailed mechanistic understanding of the in-
terplay between plants and their dispersers in response to
variation in environmental factors. Dispersers may forage
more frequently in some habitats than others (e.g., Guitian
et al. 1992) or deposit seeds in a nonrandom pattern with
respect to habitat type (Wenny 2001; Russo et al. 2006).
The environmental conditions preferred by dispersers may
not be optimal for seed germination or establishment.

We used grid-based (GB) simulation models to capture
spread dynamics in a framework that is discrete in space,
time, and state. These types of models are alternatively
called cellular automata or spatially explicit models, de-
pending on the context (Jongejans et al. 2008b), and are
often found in individual-based modeling schemes
(Grimm and Railsback 2005; Berger et al. 2008). We use
a pattern-oriented approach (Grimm and Railsback 2005)
to develop GB models that can reproduce observed pat-
terns of spread in both space and time. GB models are
appealing because they can incorporate more biological
and geographic realism through complex interacting fac-
tors than comparable analytic techniques (Jongejans et al.
2008b). GB models have been used extensively in plant
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ecology (for recent reviews, see Higgins and Richardson
1996; Jeltsch and Moloney 2002; Grimm and Railsback
2005; Winkler 2006; Berger et al. 2008; Jongejans et al.
2008b; Franklin 2010; Hui et al. 2010; Tsoar et al. 2010).
GB models have the advantage of decoupling a complex
space-time problem into two simpler problems: a temporal
model within a cell and a spatial model that connects
adjacent cells. In landscape models for population dynam-
ics, this decomposition typically corresponds to local pop-
ulation growth within a cell and dispersal among cells. GB
modeling has previously been applied to invasions with
much success (see reviews listed above). It is particularly
instructive for modeling invasions across large spatial
scales because GB models readily incorporate landscape
heterogeneity based on GIS data plus stochastic, rare long-
distance dispersal (LDD) events that can greatly affect
spread dynamics (Kot et al. 1996; Jeltsch et al. 1997; Hig-
gins and Richardson 1999; Clark et al. 2001). However,
most mechanistic models for dispersal consider only ho-
mogeneous landscapes (Jongejans et al. 2008b). Our mod-
els are unique in the combination of factors they incor-
porate in a GB framework, although elements of our
approach can be found in earlier spatial spread models
that include mechanistic seed dispersal (e.g., Nathan and
Muller-Landau 2000; Higgins et al. 2001; Russo et al. 2006;
Tsoar et al. 2010), LDD (e.g., Higgins et al. 2001; Levey
et al. 2005, 2008; Cannas et al. 2006), heterogeneous land-
scapes (e.g., With 2002; Schurr et al. 2008), and large
(landscape to regional) spatial scales (e.g., Ostendorf et al.
2001; Perry and Enright 2002). Our analysis also provides
one of the most detailed and comprehensive explorations
of model parameterization and validation (see appendixes,
available in a zip file) that we have found, following the
recommendations of Grimm and Railsback (2005) and
Schmolke et al. (2010).

As a case study, we consider the spread of an invasive
woody liana (Oriental bittersweet Celastrus orbiculatus) fa-
cilitated by invasive European starlings (Sturnus vulgaris)
over the past century across northeastern North America
(New England; see fig. 1). European starlings (Sturnus vul-
garis), which are particularly abundant frugivores in New
England, are important seed dispersal agents for bitter-
sweet. Large flocks of starlings forage heavily on the plen-
tiful bittersweet fruits during the late autumn and winter
months when other resources are scarce (LaFleur 2006)
and increase germination of the seeds they ingest (LaFleur
et al. 2009). The first records of starlings in New England
(New Haven, CT, 1906) predate those of bittersweet
(Derby, CT, 1916), and their range expansion preceded
that of bittersweet throughout New England (fig. 1). The
sheer numerical dominance of starlings (on average 77
times more abundant than other potential dispersers) in
Christmas Bird Count surveys across New England sug-
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gests that they are the dominant dispersal vector (fig. S17
[figs. S1-S21 are available in the zip file]; see “Discussion”
for a justification to focus on starlings as the primary
dispersal vector). Both starlings and bittersweet flourish
in developed and agricultural landscapes and particularly
along forest edges and hedgerows (Ibanez et al. 20094,
2009b; Latimer et al. 2009; Mosher et al. 2009); expanding
starling populations may have been largely responsible for
delivering seeds to suitable habitats.

We present a comprehensive GB approach that scales
from local behavior to landscape patterns, simulating the
spread of a bird-dispersed invasive plant. We focus on
answering the following questions: (1) What mechanisms
drive the spread of bittersweet in New England? (2) How
can dynamic mechanistic models be used to complement
static phenomenological models to better understand the
nonequilibrium species distributions? (3) How can the
model be generalized to other systems?

Empirically calibrated GB models for our study system
investigate how starling movement, starling habitat use,
and bittersweet habitat preferences affect invasion dynam-
ics in a heterogeneous landscape, allowing us to test the
hypothesis that dispersal by starlings is sufficient to explain
the spread of bittersweet in New England over the past
century. We evaluate the predicted patterns of bittersweet
spread by comparison with the historical pattern of oc-
currence since 1916. We demonstrate how mechanistic and
phenomenological modeling approaches complement each
other by comparing our dynamic models to static, cor-
relative species distribution models (Ibanez et al. 20094,
2009b) to better understand distribution dynamics. The
appendixes provide extensive discussion of modeling con-
siderations, evaluation, and R code (R Development Core
Team 2009) to help users develop their own models.

Methods
Model

A brief conceptual overview of the model will simplify its
presentation. The objective of the model was to determine
the extent to which robust predictions of spread are pos-
sible using a simple set of mechanisms. There are four
empirically derived components to our model. First, each
cell is classified by land use type. Plant spread is modeled
on this landscape using three mechanisms: (1) local pop-
ulation growth within cells, (2) local seed dispersal among
nearby cells, and (3) random LDD. It is important to
distinguish the simplicity of the model from the methods
used to estimate values for each of these parameters (see
table 1 for a summary of parameters). We first describe
the model in detail and then discuss a way of estimating
these parameters from available data for our study system.
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Landscape. We begin the model by specifying a landscape
on which to model species spread. This consists of over-
laying the landscape with a two-dimensional square grid
of appropriate size and classifying the land use/land cover
(LULC) in each grid cell. LULC designations in each cell
can be determined by majority rule of smaller, resampled
composite cells to accommodate different landscape spatial
resolution (e.g., Borrough and McDonnell 1998). Next, we
specify the duration of the time step associated with each
iteration of the model.

Local Population Growth. The model has one parameter
for plant population growth for each habitat type. Local
population growth occurs geometrically in each cell, with
abundance defined on the interval between 0 and a car-
rying capacity:

N,,, = AN, if N, < carrying capacity,

N,;, = N, if N, = carrying capacity,

where N is the number of individuals, N is the asymptotic
population growth rate reflecting the balance between
growth and mortality, and ¢ is time; N could be >1, cor-
responding to population growth, or <1, corresponding
to decline. For simplicity, we round noninteger abundance
up at the end of each time step.

Local Dispersal. Changes in population in a single cell were
achieved by either geometric growth within a cell or im-
migration from other cells. Immigration by a single seed
increased the population of the cell by 1. Each cell was
connected to adjacent cells by stochastic local dispersal. In
our case study, birds constitute the local dispersal mech-
anism; however, in principle, any dispersal mechanism can
be used. We refer here to cells that produce emigrants as
source cells and the set of neighbors as target cells. The
number of emigrants produced by each cell was deter-
mined on the basis of the population growth rate and local
dispersal kernel; N(\; — 1) represented the number of off-
spring produced in cell i at time ¢, which were then dis-
tributed according to the local dispersal kernel. Many of
these land in the source cell, while some (approximately
17% in the best-supported model; fig. S19) land in nearby
cells. We used 7 x 7-cell local dispersal neighborhoods
(our dispersal kernel had negligible weight outside this
neighborhood; fig. S19), with the strength of the connec-
tion among cells modeled by an exponential function of
distance. We chose an exponential kernel because it has
only one parameter and thereby represents the simplest
dispersal distribution among those widely used for dis-
persal kernels (Jongejans et al. 2008b). However, any suit-
able distribution can be used. The exponential distribution
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Table 1: Summary of model parameters

Parameter Best value  Data Parameter estimation
Mean local bird dispersal distance .286 cells = Radio tracking, banding Use tracking data to estimate velocity and
2.14 km recapture combine with seed retention times to ob-
tain movement distances; fit these dis-
tances to an exponential distribution
Population growth rate Transplant experiments: Use pattern-oriented parameterization con-
seedling survival, adult sistent with the ranking of population
survival, growth (biomass) growth rates according to adult survival
and biomass accumulation
Developed 2.1
Agricultural 1.5
Deciduous 1.4
Coniferous .5
Starling landscape use Proportion of (1) each land-  Divide the proportion of time spent in each
scape where radio tracking landscape by the proportion of each land-
conducted and (2) time scape type to obtain relative values, then
spent in each landscape normalize to estimate proportion of time
type during radio tracking spent in each landscape type
Developed .39
Agricultural 44
Deciduous .06
Coniferous 11

Random LDD 1 event/year

Banding recaptures

Use pattern-oriented parameterization and
minimum annual contribution of LDD
consistent with relative frequency of long-
distance movements from banding recap-
ture data

Note: LDD, long-distance dispersal.

is combined with a disperser habitat use index to incor-
porate variation in LULC:

P(target,|source;) oc
disperser habitat use; x exp (—k[x; — x;|),

where 1/k is the mean of the dispersal kernel and x; refers
to the position (center) of cell i. Hence, the probability of
dispersing to a cell is an exponential function of the dis-
tance between cell source and target cell centers, up-
weighted or downweighted by a discrete index of the dis-
perser habitat use of the target cell.

Long-Distance Dispersal. We separately modeled LDD,
which can be interpreted to correspond to anthropogenic
agents or emigration by birds. We model LDD using a
single parameter, the number of events per year. A single
dispersal event increases the population of the target cell
by one individual. The LDD emigrant disperses from a
randomly chosen occupied site to a random unoccupied
site in the LDD neighborhood. The LDD neighborhood
of a given source cell is defined as all cells within some
maximum distance of the source (e.g., the entire landscape
in our case study) but excluding the local dispersal neigh-

borhood (e.g., 7 x 7 cells, or roughly 65 km x 65 km,
in our case study). The choice of source and target cells
is independent of LULC classification.

Parameter Estimation for Starling-Bittersweet System

We estimated parameter values with available data when
possible and used pattern-oriented modeling methods
when little or no data were available (also known as inverse
modeling; Grimm and Railsback 2005). Pattern-oriented
parameterization seeks combinations of parameters that
reproduce multiple observed patterns (in our case the spa-
tial and temporal patterns of spread) while searching over
a large range of parameter values. We performed sensitivity
analyses to examine the implications of variation in these
estimates. While we provide the “best” parameter estimates
for simplicity (table 1), it is important to recognize that
this parameterization strategy describes a range of param-
eter values over which observed patterns are reproduced
(for details, see table S1 [tables S1-S4 are available in the
zip file]). Testing a range of parameter values against ob-
served patterns allowed us to fully explore the model, par-
ticularly when more precise empirical estimates are not
available. We consider a time step of 1 year; hence, all



parameters can be interpreted as annual rates. However,
the model could be readily scaled to accommodate other
temporal resolutions.

Landscape. We modeled population dynamics in 5 x 5-ft
cells, which required 3,057 cells to cover New England.
We used LULC classifications for the region (National Oce-
anic and Atmospheric Administration 1995-), in con-
junction with data on starling movement patterns and
bittersweet seed survival, to reclassify the original 30 classes
into four appropriate LULC classes: developed, agricul-
tural/grassland, deciduous forest, coniferous, and mixed
deciduous-coniferous forest (henceforth coniferous; table
S4). This spatial resolution and LULC classification has
been used effectively to explain bittersweet distributions
in earlier static models (Ib4nez et al. 20094, 2009b) and
allows a direct comparison to our dynamic mechanistic
model. We assume that LULC has not changed appreciably
at this resolution in the past 90 years. This seems reason-
able, given that the largest change in the region over the
past 2 centuries—the return of agricultural lands to for-
est—occurred primarily from 1850 to about 1900 (cf. Fos-
ter 1992; Mosher et al. 2009).

Local Population Growth. To initialize the model, we used
the first three observed naturalized occurrences of bitter-
sweet in the New England landscape (from herbarium re-
cords; Mehrhoff et al. 2003). These occurred in Derby,
Connecticut (1916); Falmouth, Massachusetts (1919); and
New Durham, New Hampshire (1938). We started the
model in 1919 with the first two sites, later introduced a
population in New Durham in 1938, and iterated a total
of 90 years. In the model, we seeded the introduction sites
with a population size equal to half that of the carrying
capacity in order to avoid stochastic extinctions resulting
from small populations (history confirms that the real
source populations overcame this complication). This as-
sumption is equivalent to permitting an extremely high
population growth rate for the first 2 years after intro-
duction, a phenomenon that has been empirically ob-
served for aggressive invasive species in a number of sys-
tems (e.g., Jongejans et al. 2008a; Schutzenhofer et al.
2009).

Asymptotic population growth rates for each landscape
were based on survival rates in different landscapes mea-
sured in transplant experiments using seedling and adult
survival (Leicht 2005; Leicht-Young 2007; table S3). These
are, in some sense, free parameters that can be adjusted
using a pattern-oriented approach (Grimm and Railsback
2005) to overcome imprecise or unavailable data at the
chosen spatial scale (as will usually be the case for coarse
spatial scales). The transplant experiments indicated that
bittersweet had the highest survival (>95%) and greatest
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mean biomass accumulation at harvest in developed and
agricultural landscapes. Plants in deciduous landscape also
showed high survival (90%-95%) but grew substantially
(60%-70%) less, while coniferous landscapes were rela-
tively unfavorable for survival (60%—80%; Leicht 2005;
Leicht-Young 2007). We adopted this hierarchy for land-
scape preference (the data component; table 1) and ad-
justed N values to obtain the minimum amount of spread
necessary to predict the majority of presences (the pattern-
oriented component). We then used sensitivity analysis to
ensure that our results were robust to deviations in the
chosen N values. While most perennial plant population
growth rates remain close to 1 (Silvertown et al. 1993)
over short time periods, growth rates may be much higher
(e.g., Schutzenhofer et al. 2009). We considered N values
on the interval [0, 2.1], since these reflect the range of
sustainable growth during invasion (cf. Jongejans et al.
2008a).

In order to make the model run faster, we take advantage
of the observation that varying the per-cell carrying ca-
pacity between 50 and 50,000 had no significant effect on
predicted presence or absence (see app. S1). For the local
dispersal neighborhood size and population growth rates
we considered, we find that allowing larger carrying ca-
pacities does not affect early spread and affects the number
of dispersing seeds only after 8-20 years have passed. After
8-20 years, most cells in the local dispersal neighborhood
of an inhabited cell have already been colonized during
this interval, and hence patterns of presence are not af-
fected. Given these considerations, we chose a carrying
capacity of 200 as a modeling convenience to allow the
model to run quickly.

Local Dispersal. Starlings were introduced to New York
City in 1890-1891 (Cabe 1993), and the Christmas Bird
Counts, beginning in 1900, record their yearly spread
across the New England landscape (fig. 1; National Au-
dubon Society 2002). The historical presence of bittersweet
appears to lag starling presence by approximately 40-60
years (fig. 1). We therefore assumed in the model that
starlings are effectively present throughout the landscape
wherever bittersweet is present, and we did not model
starling dynamics.

Seed dispersal was partitioned between local dispersal
by birds and random LDD that captured infrequent bird
movement or human-assisted dispersal. Landscape struc-
ture has been shown to influence feeding behavior (e.g.,
Evans et al. 2009) as well as fruit abundance (e.g., Salla-
banks 1993), so we interpret local seed dispersal to derive
from feeding behavior and movements among roosts. To
obtain a distribution of local movements by starlings, we
used empirical data collected by LaFleur (2006) as part of
a study examining their effectiveness as seed dispersers of
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invasive plants. During this study, radiotelemetry was used
to measure the distances that free-living starlings moved
per unit time (methods in LaFleur 2006). Distance was
measured as the net displacement between observation
points and thus represents an underestimate of the total
distance moved. Radio tracking documented movements
of up to ~7 km (maximum distance = 7,301 m [over 184
min], mean = SD = 771 + 972 m). Such local move-
ments have been used estimate bird movements at larger
scales (Levey et al. 2005). We obtained estimates of starling
velocities by assuming straight-line movement between
observation points; since observation points only rarely
represented consecutive stops on a bird’s route, these rep-
resent conservative underestimates. Gut passage rate data
were collected from captive starlings that were fed bitter-
sweet fruits (LaFleur 2006; LaFleur et al. 2009). The mean
passage rate of bittersweets seeds was 43 + 20 min (SD),
so we considered retention times ranging from 20 to 90
min (fig. S19). By multiplying the distribution of starling
velocities by the passage rates, we estimated the seed dis-
persal kernel (see similar approaches in Holbrook and
Smith 2000; Vellend et al. 2003), which we fit with an
exponential distribution (fig. S19). Since these data focus
on local movement, the seed dispersal kernels provide po-
tential lower bounds on starling dispersal.

Similarly, we obtained an upper bound for the local bird
dispersal distribution from larger-scale bird movements
described by banding recaptures. While radio tracking of
starlings suggests that they typically move seeds on the
scale of hundreds to a few thousand meters during foraging
(LaFleur 2006), movements on the order of many kilo-
meters occur. For example, starlings roost in large groups
every night as far as 12 km from feeding sites (Morrison
and Caccamise 1990). Such distances can easily be tra-
versed within typical seed retention times (LaFleur 2009),
indicating that less frequent, longer-distance movements
may also be important for plant spread. We estimated the
upper bound on seed dispersal from banding recaptures
that describe these and even longer movements. To esti-
mate maximum starling velocities, we focused only on
recaptures where birds moved more than 10 km in less
than 2 days because these provide an upper bound for
starling velocities. Using 46 records (U.S. Geological Sur-
vey Bird Banding Laboratory, unpublished data) that met
these criteria, estimating that starlings could fly up to 8 h
per day, and dividing the distance between recaptures by
flight time, we obtained an average velocity. This provides
a conservative velocity estimate, since it ignores indirect
paths. We combined these velocities with gut passage times
in the same manner as above and obtained exponential
seed dispersal kernels. We used a distribution of movement
distances with a mean (0.29 cells) that constitutes a balance
between long- and short-distance movement (fig. S19).

We used sensitivity analysis to check that our results were
robust to deviations from this mean.

Birds use some landscapes more than others, and this
mediates their delivery of seeds. We estimated starling
landscape use on the basis of our data documenting star-
ling landscape visitation rates during tracking in the win-
ters of 2003-2004 and 2004-2005. We matched the co-
ordinates obtained from the first location of each track
with LULC data (CLEAR 2006) at 30 x 30-m resolution
to determine the proportion of observations in each land-
scape type and used this as a proxy for the time spent in
each landscape type. We estimated a landscape selectivity
index by weighting the time spent in each landscape by
the proportion of the landscape in Connecticut (Manly et
al. 2002; table 1), where the starling movement data were
collected.

Long-Distance Dispersal. We incorporated rare random
LDD events separately from local bird-mediated dispersal,
in part to reflect the difficultly of getting estimates of rare
LDD events (Clark et al. 2001). As with population growth
parameters, we used a pattern-oriented approach to pa-
rameter estimation. We used one event per year to allow
the minimum contribution of this mechanism without
making more detailed assumptions about the nature of
LDD, but we found that using five or fewer events per
year produced equivalent results (table S1). We avoid link-
ing LDD to more complex factors such as landscape struc-
ture or specific sources because there is little generality in
conclusions regarding LDD (other than the difficulty of
accurately predicting it; Clark et al. 2001) and a more
complex parameterization is apparently unnecessary to
capture dynamics in the cases we study (fig. 2). Data from
the U.S. Geological Survey Bird Banding Laboratory in-
dicate the capability of starlings to traverse long distances
quickly and contribute to LDD. They have recorded at
least three cases of starlings recaptured more than 68 km
away from the original banding site just 2 days after cap-
ture out of 25,000 total records; one individual traveled
as far as 178 km (U.S. Geological Survey Bird Banding
Laboratory, unpublished data; cf. fig. S19, inset). Given
that between approximately 100,000 and 600,000 starlings
have been observed during Christmas Bird Count surveys
each year since 1960 (fig. S19), a single LDD event per
year is likely a conservative estimate.

In our model, the LDD emigrant disperses from a ran-
domly chosen occupied site to a random unoccupied site
outside the local bird dispersal neighborhood. This was
justified because rare LDD events are typically uncorre-
lated with standard means of dispersal (Higgins et al.
2003), which might otherwise tend to deposit seeds in
occupied sites during starlings’ foraging movements.
Equivalent results were achieved by removing the restric-
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tion on occupied sites while increasing the number of LDD
events. LDD immigrants could occur in any cell. However,
we also tested restricted LDD neighborhoods (51 x 51 or
25 x 25 cells) centered on the source cell (figs. S14, S15).
Starlings have also been noted to fly at 60-80 km/h (Feare
1984); thus, traveling such distances within feasible seed
retention times is quite possible. Furthermore, we expect
LDD to occur through a variety of other mechanisms (not
just starlings), so modeling the entire landscape as the LDD
neighborhood seemed appropriate.

Model Evaluation

We evaluated the predicted range expansion by compar-
ison to two presence-only data sets from the IPANE project
(Mehrhoff et al. 2003): (1) a time series derived from 179
herbarium specimens collected from 1916 to 2009 (fig. 1)
and (2) 991 field records collected from 2002 to 2009. The
field data set provided greater sampling intensity than the
herbarium data but essentially captured only a single snap-
shot of the population in time. We compared model pre-
dictions, averaged over 100 runs, to the observed presences
at five points during the historical time series (1940, 1960,
1980, 2000, and 2009). Finally, we evaluated the model
using sensitivity analysis on all parameters.

Model evaluation is challenging when comparing mod-
els with different parameter values because allowing
greater spread will necessarily increase model sensitivity
(i.e., correctly predicted presences). For example, we use
a growth rate of 2.1 in developed landscape cells; using a
growth rate of 25 would improve the sensitivity but would
be completely unrealistic. Because alternative methods do
not exist (Boyce et al. 2002), we report the sensitivity
(percent correct) and chose parameter values that produce
the minimum spread necessary to fit the approximate ob-
served invasion front without overestimating spread. In
evaluating model prediction success, we required that 50%
of model runs predicted presence accurately (following
Ibanez et al. 20094, 2009b).

To assess the robustness of our model and to assess
whether simpler models adequately captured historical
spread patterns or whether a more complex model might
be indicated (Jongejans et al. 2008b), we examined the
consequences of different assumptions. We tested whether
the three plant population expansion mechanisms—Ilocal
population growth, local dispersal by birds, and random
LDD—were all necessary. We also modified assumptions
about the landscape by considering three alternative land-
scapes: homogeneous (all favorable landscape), binary
(where developed, agricultural and deciduous landscapes
were grouped as favorable, and coniferous landscape and
water were unfavorable), and randomly sorted heteroge-
neous landscapes. We considered alternate introduction

scenarios by changing the location of the first three nat-
uralized populations. We also initiated the model in 1939
and 1959, using the records obtained before the respective
date as the initial populations. We used sensitivity analyses
to explore the parameter space of the model, measuring
sensitivity as the change in the proportion of presences
correctly predicted (table S1). Details of the methods and
results of the sensitivity analyses are provided in appendix
S3.

Results

Our model correctly predicted the spread of bittersweet
throughout southern New England by 2009 and its con-
tinued spread to northern New England. When compared
to the observed time series, the full model successfully
predicted between 82% and 95% of the observed presences
(fig. 2). The model successfully predicted the temporal
spread patterns, with initial spread along the southern
coast of New England, extending into the Connecticut
River Valley and Greater Boston, then spreading through
much of southern New England and isolated patches in
the north. Our model predicted that virtually all of south-
ern New England and Vermont is occupied, while much
of New Hampshire and Maine were invaded in fewer than
10% of runs. Many of our false negatives occurred in New
Hampshire and coastal Maine. The main results of the
sensitivity analysis were as follows: (1) plant population
growth, local bird dispersal, and random LDD were all
essential to produce accurate predictions; and (2) the
model was most sensitive to developed and agricultural
land use parameters (i.e., bittersweet growth rate, starling
landscape use, and landscape geometry) before 1960 and
deciduous and coniferous forest parameters after 1960
(tables S1, S2).

Changing plant population growth rates (A\) had a large
impact on predictions (table S1). In general, increasing
growth rates across all landscapes improved predictions
slightly. However, increasing A above 1 in coniferous for-
ests led to vast overprediction. Reducing growth rates re-
duced spread substantially. High growth rates in developed
landscapes were essential to match the rapid range ex-
pansion through 1980. Growth in deciduous forests was
also important because this landscape is widespread across
New England and separates developed and agricultural
landscapes that are more favorable to population growth.
Population growth rates in deciduous forest below 1.4 lim-
ited early spread into forests, while higher values over-
predicted spread.

Incorporating the geometry of a heterogeneous land-
scape was also critical to accurately predicting patterns of
spread. Spread patterns depended strongly on the intro-
duction points (figs. S7-S11; table S2). For example, if the



initial introductions had been in the north, spread would
have been contained by coniferous forest barriers (fig. S8).
If initial introductions had occurred in the west, much of
Vermont would have been occupied by 1980, while early
spread along the Connecticut coast would have been much
slower than what was observed empirically (fig. S10). Dif-
ferential plant population growth rates among landscapes
allow for more accurate models. The lower bounds on the
population growth rates necessary to reproduce spread
patterns in both deciduous landscapes (1.4) and developed
landscapes (2.1) were particularly critical early in the in-
vasion, when propagule pressure may have been excep-
tionally high in proximity to developed landscapes (table
S1).

Discussion

We have developed a dynamic mechanistic, spatially ex-
plicit GB model that accurately predicts landscape invasion
patterns of Oriental bittersweet across New England.
Agreement between predicted and observed presence pro-
vides evidence that we have incorporated the necessary
system complexity and that the mechanisms included are
reasonable representations of the real processes affecting
spread (Jongejans et al. 2008b). However, GB models are
very flexible and permit a wide variety of pattern formation
with highly customizable rules. It is essential that param-
eter values and assumptions have empirical justification
because of the need to ensure that model accuracy is not
a spurious result of optimized parameters. Our analysis
represents the exhaustive exploration of assumptions and
parameter space necessary for robust inference on real
systems (cf. Grimm and Railsback 2005; Schmolke et al.
2010).

We draw several conclusions that pertain to the broad
spectrum of invasion models. Most significantly, we find
that landscape heterogeneity and geometry can determine
range expansion rate, the pattern of spread from different
introduction points, and sensitivity to landscape barriers
(figs. 3, S7-S11). We also demonstrate the necessity of
incorporating plant population growth, local dispersal, and
LDD into models if the aim is to accurately reproduce
broad, regional-scale spatial and temporal dynamics. High
plant population growth parameters in some landscapes
provided sufficient propagule pressure to fuel the spread
of bittersweet across less favorable landscapes. In spite of
dispersal by wide-ranging starlings (local bird dispersal
mean ~2.1 km), random LDD was still critical to produce
realistic patterns of spread. LDD is responsible for estab-
lishment in remote areas and seeding nascent foci (Moody
and Mack 1988; Jeltsch et al. 1997) sooner than would
local bird dispersal, which mainly controls the rate of
backfilling.
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Figure 3: Comparison to static phenomenological hierarchical
Bayesian (HB) model. Symbols follow figure 2. a, Predicted proba-
bility of presence (between 0 and 1; see scale bar) from HB model.
b, Difference in predicted probability of presence between our grid-
based (GB) model from 2009 and the HB model. The scale bar
indicates the probability of presence in the GB model minus the
probability of presence from the HB model. Dark gray indicates that
predicted probabilities are higher in the GB model, and light gray
indicates that predicted probabilities are higher in the HB model.



40 The American Naturalist

Mechanisms driving Bittersweet Spread

Our model provides insight into factors driving bitter-
sweet’s spread. The response of bittersweet to different
landscape types was particularly important. In the model,
the early invasion (through 1960) was primarily driven by
parameters in agricultural and developed landscapes (table
S1; see also Mosher et al. 2009), since these represent the
main corridors through which the invasion began. The
model proved largely insensitive to variation in all conif-
erous land use parameters through 1960 because there is
relatively little of this landscape type in southern New
England. In contrast, the later stages of invasion were ap-
parently dictated by these same parameters for deciduous
and coniferous forests because these constitute the areas
that were reached only after 1980 (table S1). Population
growth rates must have been exceptionally high in devel-
oped areas (>1.9 before 1980; table S1; Leicht-Young
2007). Such rapid growth suggests that density dependence
was absent (at least initially) or that anthropogenic cul-
tivation and reintroduction was an important contributor
to spread. Sensitivity analysis revealed the importance of
landscape geometry; prediction accuracy increased when
populations were initiated in the south (where human
population density is highest and where the species was
first observed to be naturalized), suggesting that anthro-
pogenic influences may have been important in this area
(fig. S8). Deciduous landscapes provided the main poten-
tial corridor between the favored developed and agricul-
tural landscapes. Our sensitivity analysis indicated that
when deciduous forest is a sufficiently favorable habitat,
there is little to inhibit spread throughout much of south-
ern New England (table S1); population growth rates >1.4
in deciduous landscapes were necessary to accurately re-
produce spread patterns (table S1). Small patches of fa-
vorable landscape embedded in deciduous forest may ac-
tually be sufficient to sustain such high growth (A >1)
because the interface between forest and developed or ag-
ricultural areas is a prime place for establishment and
growth of bittersweet (cf. Mosher et al. 2009). Thus, our
model may underestimate spread in the north because it
may underestimate the amount of suitable habitat there.

While the seed dispersal kernel generated by starling
movement was essential to predicting patterns of spread,
variation in starling landscape use had a smaller role. The
model showed high sensitivity to starlings’ use of decid-
uous landscape and developed landscape only during the
early phase of introduction (pre-1960; table S1). Essen-
tially, landscape use parameters in deciduous and devel-
oped landscape trade off with one another: when the value
of one is too high, there is insufficient spread in the other
landscape to match observations. Low sensitivity to star-
ling landscape use from 1980 to 2009 (table S1) occurred

because the high-density source populations in and around
developed areas produced a relatively dense propagule rain
throughout the bird dispersal neighborhoods. This then
obscures variation in landscape use. Use by starlings of
coniferous landscapes was insensitive to variation because
the bittersweet growth rate there was below 1, while ag-
ricultural landscape use was insensitive because only a
small portion of the landscape is classified as agricultural.
Starling landscape use affected only temporal, not spatial,
dynamics of bittersweet; the long-term predictions are
constant and driven by landscape-specific plant population
growth rates and LDD. The minor impact of landscape
use by birds on predictions is not entirely surprising. We
know of no evidence suggesting that starlings avoid trav-
eling through particular landscapes, and thus they may
deposit seeds anywhere along their route.

Projecting spread over hundreds of years allowed in-
formative patterns to emerge that reflect the importance
of landscape heterogeneity and its geometric configuration
(fig. 2; Latimer et al. 2009; Mosher et al. 2009). Much of
Maine is apparently resistant to invasion, as evidenced by
the poor population growth of bittersweet in the large
expanse of coniferous landscapes. Coniferous forests may
provide a safety buffer around favorable landscape that
requires independent introductions (LDD) for bittersweet
to establish. Isolated regions of northern Maine could po-
tentially harbor bittersweet, but the time span required to
reach these areas from elsewhere in New England may be
large (400-800 years; fig. S13). In contrast, there are few
substantial barriers to long-term spread in southern New
England. The time necessary for bittersweet to infest
northern Maine is inherently difficult to predict because
it depends on the stochasticity associated with LDD.

Our model supports the idea that the immense success
of bittersweet in New England has been facilitated by star-
lings, suggesting an important mutualism between these
species. Movements on the order of kilometers drive
spread (fig. S19; as much as 17% of seeds; figs. S14, S15;
table 1). We suspect that these movements correspond to
actual starlings traveling to roosts because these distances
are larger than typical foraging movements (LaFleur 2006).
Joint use of developed and agricultural landscapes—and
associated edges—by starlings and bittersweet make such
a mutualism more likely because starlings could deposit
large numbers of seeds at favorable sites. Increasing LDD
cannot account for these movements because it would lead
to a much more random pattern of historical spread (fig.
S18), as opposed to the relatively smooth invasion front
that we observe (figs. 1, 3).

While other dispersers cannot be ruled out in the real
range expansion of bittersweet, we have shown that star-
lings alone are sufficient to explain historical spread pat-
terns. The numerical dominance of starlings, based on



Christmas Bird Counts (National Audubon Society 2002;
fig. S20), compared with other species that are known (or
suspected) to feed on bittersweet (LaFleur 2006; LaFleur
et al. 2007) implicates them as a particularly important
disperser. From 1960 to 1997, starlings were observed to
be between 6 and 451 times more abundant than all other
potential avian dispersers combined (mean 77). More re-
cently (1998-2009), a dip in starling abundance has been
coupled with an increase in native birds. Nonetheless, star-
lings remained an average of 2.3 times more abundant
than all other potential avian dispersers combined.

The timing with which starlings eat bittersweet fruit may
also be important. Bittersweet tends to be eaten later in
winter when few other fruits are available (N. LaFleur and
J. A. Silander, personal observations). It may provide a
critical limiting resource in the winter months when star-
vation is a threat, thereby supporting the growth of starling
populations. There is high mortality in first-winter star-
lings (Kessel 1957), so widely distributed, abundant winter
food resources have the potential to drive population
growth. This aspect of their mutualism requires more
study. The spread of bittersweet is of concern, given the
variety of other bird-dispersed invasive plants beginning
to spread across New England (e.g., Euonymous alatus
[burning bush], Elaeagnus umbellata [autumn olive], in-
vasive Lonicera species [honeysuckles]).

Dynamic Mechanistic Models Complement
Static Phenomenological Models

Dynamic mechanistic models that link potential and re-
alized distributions are a critical complement to more
commonly used static phenomenological models. For ex-
ample, comparing the equilibrium potential distribution
typical of many statistical models to GB model predictions
for a particular time period (e.g., present or future) iden-
tifies high-risk areas for future spread, as we demonstrate
below.

Comparison of our GB model predictions in 2009 to a
hierarchical Bayesian (HB) generalized linear regression
model for bittersweet (Ibafiez et al. 2009a) illustrates the
importance of multimodel inference. The HB model pre-
dicts the potential distribution (probability of presence at
equilibrium; reproduced in fig. 3a) on the basis of the
same heterogeneous landscape lattice as our model but
without reference to any dispersal mechanisms. It also
accounts for smaller-scale variation through site-level hab-
itat characteristics, canopy closure, proportion of each
LULC class within each cell, and a suite of climate vari-
ables. If we interpret the proportion of GB model runs as
a probability of presence, the two models can be directly
compared by plotting the difference between their pre-
dicted probabilities of presence (fig. 3b).
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Our model shares many predictions with the HB model
but also differs in some important ways. Both models
predict that southern New England is almost completely
colonized by bittersweet, even in low-suitability coniferous
landscapes. The HB model predicted minimal occurrence
in Vermont, while the GB model predicted ample spread
there by 2000 (fig. 3). The clumps of suitable habitat in
Vermont combined with potentially dense propagule rain
originating from more favorable southern populations
may be sufficient to offset the climatic limitations pre-
dicted by the HB model. In coastal Maine, the HB model
predicts high suitability while the GB model predicts no
spread into this region. This comparison suggests that
there may be sufficient suitable habitat should bittersweet
reach the region. Identifying differences such as these be-
tween models can guide management by locating high-
risk areas and predicting the timescales over which spread
will occur. These examples provide just a glimpse of the
advantages of using complementary modeling strategies
and represent an important area for future research.

Generalizing the Model

Our model is general and can easily be adapted to study
other systems. Parameters may be estimated with different
or fewer data than we have demonstrated here; pattern-
oriented parameterization combined with sensitivity anal-
ysis can ensure that the uncertainty in parameter values
does not lead to qualitatively different predictions. For
example, one might lack explicit information regarding
landscape use by birds, but more general kinds of obser-
vation can broadly identify the landscape types used by
many birds, while sensitivity analysis can be used to test
the importance of precise parameter values.

The grid can be modified to represent any spatial scale.
Population units can be scaled for different spatial and
temporal resolutions and different measures of population
size. Large carrying capacities can be used to represent
individual plants/larger cells, or smaller carrying capacities
can indicate plant populations/smaller cells. If smaller cells
are used, one might consider an individual-based model
(Grimm and Railsback 2005). A demographic model for
plants can be easily incorporated within each cell to de-
termine plant population growth rates and the number of
seeds available for dispersal (Grimm and Railsback 2005;
Jongejans et al. 2008b). Population growth rates can be
estimated from a variety of sources and need not be gen-
erated from small-scale transplant experiments, as we have
done here. The dispersal rates can also be scaled, with
larger mean distances indicating smaller cell size. Local
dispersal kernels can be constructed for any dispersal agent
(e.g., wind, passive, animal; e.g., Greene et al. 2004; Bullock
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et al. 2006). A more detailed treatment of LDD is possible
when particular dispersal agents are known or suspected.

The simplicity of the model allows for quick and effi-
cient exploration of different parameter scenarios to ex-
plore broadscale patterns when precise empirical data are
unavailable. Sensitivity analysis can easily reveal relatively
more and less important parameters, which can be used
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